常剑
时间: 2024-09-02 来源:
姓名:常剑
职称:教授、博导
职务:无
院系:能源动力与机械工程学院
研究方向:
多相流与反应工程
有机固废热化学转化制氢
燃煤电站污染物控制
联系方式:
电话:010-61772351
邮箱:changjian@ncepu.edu.cn
地址:主楼F806
个人简介及主要荣誉称号:
2008年中国石油大学(北京)博士毕业;2010年华东理工大学博后出站;2010-2013在华北电力大学可再生能源学院,任讲师;2014年-至今,在华北电力大学能动学院,任副教授/教授。担任研究生班主任、研究生导师过程中荣获优秀研究生班主任、优秀研究生导师等荣誉。
教学与人才培养情况:
讲授本科生课程《工程流体力学》和《物理化学》、研究生课程《计算流体力学》等。指导硕士研究生3人获得校优秀学位论文,2人获北京市优秀毕业生;指导本科生1人获校“百篇”优秀本科毕业设计论文。
主要科研项目情况:
主持国家自然科学基金面上项目2项、国家重点研发计划子课题1项、校企合作项目1项;参与重大科研项目、省部级项目和国际交流合作项目多项。
主要获奖情况:
华北电力大学“优秀硕士论文指导教师”(3次)
华北电力大学“优秀研究生班主任”(1次)
代表性论著:
[1]Chang, J.*, Ma, X., Li, X. (2023). Computational particle fluid dynamics modeling and design of in-situ catalytic deNOx in an industrial CFB boiler. Chemical Engineering Science, 270, 118502
[2]Zhou, Z., Chang, J.*, Wang, X. (2022). Large eddy simulation of hydrodynamics and deNOx process in a coal-fired power plant SCR system, Journal of Environmental Management, 320, 11580
[3]Chang, J.*, Wang, X., Zhou, Z., et al. (2022). Computational investigation of hydrodynamics, coal combustion and NOx emissions in a tangentially fired pulverized coal boiler at various loads. Particuology, 32(2), 290-303
[4]Chang, J.*, Zhou, Z., Ma, X., et al. (2021). CFD modeling of hydrodynamics, combustion and NOx emission in a tangentially fired pulverized-coal boiler at low load operating conditions. Advanced Powder Technology, 65, 105-116
[5]Chang, J*. Wang, X., Liu, W., et al. (2019). CFD modeling of hydrodynamics and kinetic reactions in a heavy oil riser reactor: Influence of downward feed injection scheme. Powder Technology, 361, 136-144
[6]Chang, J.*, Wu, Z., Wang, X. (2018). Two- and three-dimensional hydrodynamic modeling of a pseudo-2D turbulent fluidized bed with Geldart B particle. Powder Technology, 351, 159-168
[7]Chang, J.*, Zhao, J., Zhang, K. et al. (2016). Hydrodynamic modeling of an industrial turbulent fluidized bed reactor with FCC particles. Powder Technology, 304, 134-142
[8]Chang, J.*, Zhang, K., Zhu, W., et al. (2016). Gas-solid flow in a high-density circulating fluidized bed riser with Geldart group B particles. Particuology, 29, 103-109.
[9]Chang, J.*, Zhang, K., Yang, Y., et al. (2015). Computational investigation of solid sorbent carbon dioxide capture in a fluidized bed reactor. Powder Technology, 275, 94-104.
[10]Chang, J.*, Zhang, K., Meng F., et al. (2014). Computational Investigation of the Hydrodynamics, Heat Transfer and Kinetic Reaction in an FCC gasoline Riser. Chemical Engineering Science, 111, 170-179
[11]Chang, J.*, Wang G., Lan X., et al. (2013). Computational Investigation of a Turbulent Fluidized-bed FCC Regenerator. Industrial & Engineering Chemical Research, 52, 4000-4010
[12]Chang, J.*, Zhang, K., Chen H., et al. (2013). CFD modelling of the hydrodynamics and kinetic reactions in a fluidized-bed MTO reactor. Chemical Engineering Research and Design, 91, 2355-2368
[13]Chang, J.*, Meng, F., Wang L., et al. (2012). CFD investigation of hydrodynamics, heat transfer and cracking reaction in a heavy oil riser with bottom airlift loop mixer. Chemical Engineering Science, 78, 128-143
[14]Chang, J.*, Zhang K., Meng F., et al. (2012). Computational investigation of hydrodynamics and cracking reaction in a heavy oil riser reactor. Particuology, 10, 184-195
[15]Chang, J.*, Wang G., Gao J., et al. (2012). CFD modeling of particle-particle heat transfer in dense gas-solid fluidized beds of binary mixture. Powder Technology, 217, 50-60
[16]Chang, J.*, Yang S., Zhang K. (2011) A particle-to-particle heat transfer model for dense gas-solid fluidized bed of binary particles. Chemical Engineering Research and Design, 89, 894-903