刘桂成

姓名:刘桂成

职称:教授、博导

院系:能源动力与机械工程学院


研究方向:

光电转换/储能电池:电解水制氢、二次电池、燃料电池、太阳能电池等


联系方式:

电话:010-61772852

邮箱:gcliu@ncepu.edu.cn, log67@163.com

地址:主楼F-823


个人简介及主要荣誉称号:

1、主要荣誉

[1] 2019-2022,韩国智库学者(韩国教职序列),

[2] 2015-2018,海外优秀学者(韩国,又称“高丽学者”)。

2、个人简介

河北枣强人,博士毕业于北京科技大学物理化学系。曾先后在中科院北京纳米能源所、韩国科学技术研究院(KIST)储能中心、Gachon University(嘉泉大学)纳米中心、Dongguk University(东国大学)物理系分别担任博士后(兼安全员)、访问教授、研究员和助理教授,在韩国连续从事教研工作7.5年。通过华北电力大学海外高层次人才引进计划回国,担任教授、博导。

3、成果概述

从事能源与环境电化学、光电转换/储能电池领域研究,聚焦于(膜)电极微结构调控、电极表/界面的半导体设计等,以实现金属电极的无枝晶化/柔性可穿戴化、电极过程动力学的改善、光调控/增强型电极的开发为目标,具备15年的基础研究和技术转化经验。

授权中、韩专利24项,发表138篇学术论文。其中,在 Adv Energy Mater 、 ACS Energy Lett 、 Appl Catal B 、 Adv Funct Mater 、 ACS Nano 、 Nano Energy 、 Carbon Energy 、 Energy Stroage Mater 、 Nano-Micro Lett 等期刊发表第一/通讯作者论文90篇,H因子35。

受邀为第九届东亚峰会、中国储能产教融合大会等国内外学术会议作主题报告、主旨演讲或邀请报告十余次,作为分会场主席和学术委员参与组织了国际、国内的能源与环境学术会议、洁净能源材料及技术国际会议等。

4、学术兼职

[1] 评审专家:科技部国际合作、大国**人才、北京**人才、广东科技厅、韩国自然基金、等;

[2] 顾问:智慧环境联合研究中心、河北省光电智造研究院、等;

[3] 副主编: Materials Reports: Energy ;

[4] 编委: Membranes ;

[5] 青年编委: Nano-Micro Lett 、 eSci 、 Nano Mater Sci 、 EcoEnergy 、 Rare Metals 、 CCL 、 IJMMM 等十余期刊;

[6] 审稿/仲裁人: Adv Mater 、 Angew Chem 、 Nat Comm 等80余SCI期刊。


教学与人才培养情况:

1、教学课程

[1] 电化学工程,2023~2024学年第1学期,48学时,30人(储能2101-本科生);

[2] 燃料电池与太阳能电池,2023~2024学年第1学期,16学时,23人(研究生);

[3] 电化学工程,2024~2025学年第1学期,48学时,33人(储能2202-本科生)。

2、学生培养

[1] 在读博士生(含合作培养)

张军选(东国大学,SRD-Ⅰ全额奖学金,2023级)

[2] 在读硕士生

侯成功、王义铭、孙欣日、韩佳浩、等10余名。

[3] 毕业生(回国前)

博士(含合作培养):杨凯(2022届)、付豪(2023届)、熊凌云(2023届)、等4名。(其中,3名获东国大学SRD-Ⅰ全额奖学金和2022年度校级最佳论文奖;2名获Park Kwanho奖学金和2022年国家优秀自费留学生奖学金);

学士:Byun Sieum(在韩国时,변시은,2019届)。

此外,在KIST(2015-2023),协助指导博士后、博士生、硕士生各3名,国籍涉及中、韩、越、印尼等国家。

[4] 毕业生(回国后)

学士:霍圣钠(2024届)、黄鹏(2024届)。


主要科研项目情况:

[1] 华北电力大学海外***,2023-2027,主持;

[2] 省部级科技项目,2024-2027,主持;

[3] 韩国自然科学基金(国家重点研发计划): 2022K1A3A1A20014496,1.8亿韩元,~107万元RMB,主持;

[4] 韩国自然科学基金:2022R1F1A1074707,1.85亿韩元,~110万元RMB,已结题,主持;

[5] 韩国自然科学基金(国际合作交流项目):2021K2A9A2A06044652,0.3亿韩元,~18万元RMB,已结题,主持(韩方PI);

[6] 韩国自然科学基金(优秀青年研究): 2019R1C1C1006310,3.75亿韩元,~225万元RMB,已结题,主持;

[7] 韩国自然科学基金:2019H1D3A2A02100593,1.8亿韩元,~108万元RMB,已结题,主持;

[8] 韩国自然科学基金:2015H1D3A1036078,1.7亿韩元,~100万元RMB,已结题,主持。


代表性论著:

1、专利节选

[1] 直接甲醇燃料电池用三维网络结构膜电极的制备方法.  专利号2011100034428.

[2] 钛/二氧化钛微米锥-纳米线电极及其制备方法和应用.  专利号2014105453402.

[3] Eutectic liquid metal-air batteries comprising liquid metal electrode and method of preparation thereof.  10-2171532.

[4] Ladder structure carbon-tinoxide-sulfur composite, preparation method thereof and cathode material for lithium-sulfur battery comprising the same. 10-1794317.

[5] Lithium metal electrode and method of manufacturing the same. 10-1979349.

2、论文节选

[1] Y Bai, S Tian, Y Guan, X Wang, F Wang, M Li, Z Tan, G Liu*. Bidirectional voltage regulation for integrated photovoltachromic device based on P3HT-electrochromic unit and perovskite/organic tandem solar cells. Small, 2024, 2402903. (IF 13, Q2)

[2] MX Tran#, G Liu#, R Ardhi, S-W Lee*, JK Lee*. A flexible fiber-shaped solar chargeable zinc–polyaniline battery with a fullerene-based electron transfer layer. Energy Storage Materials, 2024, 65:103145. (IF 18.9, Q1)

[3] J Mao, Y Ci, J Liu, C Li, W Yang, Y Yun*, G Liu*, et al. Experimental and Theoretical Investigation of an Ionic Liquid-based Biphasic Solvent for Post-combustion CO2 Capture: Breaking Through the "Trade-off" Effect of Viscosity and Loading. Chemical Engineering Journal, 2024, 491:151991. (IF 13.3, Q1)

[4] L Xiong, H Fu, K Yang, JY Kim, R Ren, JK Lee*, W Yang*, G Liu*. Reversible Zn/polymer heterogeneous anode. Carbon Energy, 2023, 5(6): e370. (IF 19.5, Q1)

[5] L Xiong, Y Kim, H Fu, W Han, W Yang*, G Liu*. F-Doped Carbon Nanoparticles-Based Nucleation Assistance for Fast and Uniform Three-Dimensional Zn Deposition. Advanced Science, 2023, 10(16): 2300398. (IF 14.3, Q1)

[6] R Ardhi, G Liu*, J Park, JK Lee*. Alkali Adatom-Amplified Schottky Contact and Built-in Voltage for Stable Zn-Metal Anodes. Energy Storage Materials, 2023, 54: 863–874. (IF 18.9, Q1)

[7] H Fu, Y Liu, Z Xie, Y Kim, R Ren, W Yang*, G Liu*. Ionic accelerator based on metal–semiconductor contact for fast electrode kinetics and durable Zn-metal anode. Chemical Engineering Journal, 2023, 468: 143642. (IF 13.3, Q1)

[8] L Wang, L Wang, Q Shi, C Zhong, D Gong, X Wang, C Zhan*, G Liu*. In-situ constructed SnO2 gradient buffer layer as a tight and robust interphase toward Li metal anodes in LATP solid state batteries. Journal of Energy Chemistry, 2023, 80: 89–98. (IF 14, Q1)

[9] K Yang, H Fu, Y Duan, M Wang, MX Tran, JK Lee*, W Yang*, G Liu*. Uniform Metal Sulfide@N-doped Carbon Nanospheres for Sodium Storage: Universal Synthesis Strategy and Superior Performance. Energy & Environmental Materials, 2023, 6(2): e12380. (IF 13, Q2)

[10] L Wang, D Gong, S Niu, L Wang, Q Shi, X Wang, J Qiao, G Liu*, C Zhan*. Origin and regulation of interfacial instability for nickel-rich cathodes and NASICON-type Li1+xAlxTi2−x(PO4)3 solid electrolytes in solid-state lithium batteries. Applied Surface Science, 2023, 619: 156741. (IF 6.3, Q2)

[11] R Ren, G Liu*, JY Kim, REA Ardhi, MX Tran, W Yang, JK Lee*. Photoactive g-C3N4/CuZIF-67 bifunctional electrocatalyst with staggered p-n heterojunction for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2022, 306: 121096. (IF 20.2, Q1)

[12] H Fu, L Xiong, W Han, M Wang, YJ Kim, X Li, W Yang*, G Liu*. Highly active crystal planes-oriented texture for reversible high-performance Zn metal batteries. Energy Storage Materials, 2022, 51: 550–558. (IF 18.9, Q1)

[13] J Kim, G Liu*, R Ardhi, J Park, H Kim, J.K. Lee*. Stable Zn Metal Anodes with Limited Zn-Doping in MgF2 Interphase for Fast and Uniformly Ionic Flux. Nano-Micro Letters, 2022, 14: 46. (IF 31.6, Q1)

[14] W Han, L Xiong, M Wang, W Seo, Y Liu, STU Din, W Yang*, G Liu*. Interface engineering via in-situ electrochemical induced ZnSe for a stabilized zinc metal anode. Chemical Engineering Journal, 2022, 442: 136247. (IF 13.3, Q1)

[15] L Wang, R Wang, C Zhong, L Lu, D Gong, Q Shi, Y Fan, X Wang, C Zhan*, G Liu*. New Insight on Correlation between the Electrochemical Stability and the Thermal Stability of High Nickel Cathode Materials. Journal of Energy Chemistry, 2022, 72: 265–275. (IF 14, Q1)

[16] L Wang, R Wang, Q Shi, C Zhong, D Gong, L Lu, X Wang, G Liu*, C Zhan*. Enhanced high-voltage robustness of ultra-high nickel cathodes by constructing lithium-ion conductor buffer layer for highly stable lithium-ion batteries. Applied Surface Science, 2022, 605: 154684. (IF 6.3, Q2)

[17] R Ardhi, G Liu*, JK Lee*. Metal-Semiconductor Ohmic and Schottky Contact-Interfaces for Stable Li-Metal Electrodes. ACS Energy Letters, 2021, 6: 1432–1442. (IF 19.3, Q1)

[18] H Fu, G Liu*, L Xiong, M Wang, J Lee, R Ren, W Yang*, JK Lee*. A Shape-Variable, Low-Temperature Liquid Metal–Conductive Polymer Aqueous Secondary Battery. Advanced Functional Materials, 2021, 31(50): 2107062. (IF 18.5, Q1)

[19] G Shim, Tran M X, G Liu*, D Byun, JK Lee*. Flexible, fiber-shaped, quasi-solid-state Zn-polyaniline batteries with methanesulfonic acid-doped aqueous gel electrolyte. Energy Storage Materials, 2021, 35: 739–749. (IF 18.9, ESI高被引, Q1)

[20] L Xiong, G Liu*, H. Fu, M. Wang, J. Kim, W. Yang*, J.K. Lee*. Wearable eutectic gallium-indium liquid fuel cells. Energy Conversion and Management, 2021, 247: 114729. (IF 9.9, Q1)

[21] W Han, G Liu*, W Seo, H Chu*, W Yang*. Nitrogen-doped carbon nanosphere-chains with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage. Carbon, 2021, 184: 534–543. (IF 10.5, Q1)

[22] J Li, Y Lin*, F Wang, J Shi, J Sun, B Ban, G Liu*, J Chen*. Progress in recovery and recycling of kerf-loss Silicon waste in photovoltaic industry. Separation and Purification Technology, 2021, 254: 117581. (IF 8.1, ESI高被引, Q1)

[23] J Kim, G Liu*, GY Shim, H Kim, JK Lee*. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Advanced Functional Materials, 2020, 30(36): 2004210. (IF 18.5, Q1)

[24] R Ardhi, M Tran, M Wang, G Liu*, JK Lee*. Chemically tuned, bi-functional polar interlayer for TiO2 photoanodes in fibre-shaped dye-sensitized solar cells. Journal of Materials Chemistry A, 2020, 8: 2549–2562. (IF 10.7, Q2)

[25] M Tran, R Ardhi, G Liu*, JY Kim, JK Lee*. Plasma-polymerized C60-coated CNT interlayer with physical and chemical functions for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 401: 126075. (IF 13.3, Q1)

[26] H Yu, G Liu*, M Wang, R Ren, G Shim, JY Kim, MX Tran, D Byun, JK Lee*. Plasma-assisted surface modification on electrode interface for flexible fiber-shaped Zn–polyaniline batteries. ACS Applied Materials & Interfaces, 2020, 12(5): 5820–5830. (IF 8.3, Q1)

[27] G Liu*, et al. Cathode catalyst layer with nanofiber microstructure for direct methanol fuel cells. Energy Conversion and Management, 2020, 218, 113013. (IF 9.9, Q1)

[28] J Kim, G Liu*, MX Tran, REA Ardhi, H Kim, JK Lee*. Synthesis and characterization of a hierarchically structured three-dimensional conducting scaffold for highly stable Li metal anodes. J Mater Chem A, 2019, 7(20): 12882–12892. (IF 10.7, Q1)

[29] M Wang, M Chen, Z Yang, G Liu*, JK Lee, W Yang, X Wang*. High-performance and durable cathode catalyst layer with hydrophobic C@PTFE particles for Low-Pt loading membrane assembly electrode of PEMFC. Energy Conversion and Management, 2019, 191: 132–140. (IF 9.9, Q1)

[30] G Liu*, et al. Soft, highly elastic, and discharge current-controllable eutectic gallium-indium liquid metal-air battery operated at room temperature. Advanced Energy Materials, 2018, 8(6): 1703652. (IF 24.4, Q1) .

[31] R Ardhi, GLiu*, MX Tran, C Hudaya, JY Kim, H Yu, JK Lee*. Self-relaxant super-elastic matrix derived from C60 incorporated Sn nanoparticles for ultra-high-performance Li-ion batteries. ACS Nano, 2018, 12(6): 5588–5604. (IF 15.8, Q1)

[32] G Liu*, M Wang, H Wang, REA Ardhi, H Yu, D Zou*, JK Lee*. Hierarchically structured photoanode with enhanced charge collection and light harvesting abilities for fiber-shaped dye-sensitized solar cells. Nano Energy, 2018, 49: 95–102. (IF 16.8, Q1)

[33] J Kim, A Kim, G Liu*, JY Woo, H Kim, JK Lee*. Li4SiO4-based artificial passivation thin film for improving interfacial stability of Li metal anodes. ACS Applied Materials & Interfaces, 2018, 10 (10): 8692–8701. (IF 8.3, Q1)

[34] M Wang, M Chen, Z Yang, Y Wang, Y Wang, G Liu*, JK Lee, X Wang*. A study on fuel additive of methanol for room temperature direct methanol fuel cells. Energy Conversion and Management, 2018, 168: 270–275. (IF 9.9, Q1)

[35] X Li, G Liu*, F Ma, S Sun, S Zhou, REA Ardhi, JK Lee, H Yao*. Enhanced power generation in a single-chamber dynamic membrane microbial fuel cell using a nonstructural air-breathing activated carbon fiber felt cathode. Energy Conversion and Management, 2018, 172: 98–104. (IF 9.9, Q1)

[36] X Li, G Liu*, S Sun, F Ma, S Zhou, JK Lee, H Yao*. Power generation in dual chamber microbial fuel cells using dynamic membranes as separator. Energy Conversion and Management, 2018, 165, 488–494. (IF 9.9, Q1)

[37] G Liu*, et al. Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature. Applied Energy, 2017, 197: 163–168. (IF 10.1, Q1)

[38] G Liu, M Peng, W Song, H Wang, D Zou*. An 8.07% efficient fiber dye-sensitized solar cell based on a TiO2 micron-core array and multilayer structure photoanode. Nano Energy, 2015, 11: 341–347. (IF 16.8, Q1)


实验室:www.x-mol.com/groups/ese(能源与环境电化学实验室隶属太阳能转化与储能技术研究所)